Презентация на тему "Фотонные кристаллы"

Презентация: Фотонные кристаллы
1 из 16
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Скачать презентацию (0.47 Мб). Тема: "Фотонные кристаллы". Содержит 16 слайдов. Посмотреть онлайн. Загружена пользователем в 2019 году. Оценить. Быстрый поиск похожих материалов.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    16
  • Слова
    другое
  • Конспект
    Отсутствует

Содержание

  • Презентация: Фотонные кристаллы
    Слайд 1

    Фотонные кристаллы

    Классификация, свойства и методы изготовления фотонных кристаллов

  • Слайд 2

    Фотонный кристалл

    Фотонный кристалл – это материал, структура которого характеризуется периодическим изменением показателя преломления. Они не пропускают свет с длиной волны, сравнимой с периодом структуры фотонного кристалла. Эти спектральные диапазоны получили название “фотонные запрещенные зоны” (photonicbandgap, PBG). В настоящее время наибольший интерес представляют фотонные кристаллы, для которых PBG лежит в видимой (λ ≈ 400 – 700 нм) или в ближней ИК (λ = 1 – 1,5 мкм) областях.

  • Слайд 3

    фотонный кристалл выполняет функцию оптического фильтра, и именно его свойствами обусловлены яркие и красочные цвета опала, который показан на рисунке

  • Слайд 4

    На фотографии изображены опалы, синтезированные в лаборатории неорганического материаловедения Химического факультета МГУ. Хорошо видна характерная для опалов специфическая игра света – под определенным углом съемки образцы интенсивно отражают красный свет.

  • Слайд 5

    Классификация фотонных кристаллов

    Фотонные кристаллы по характеру изменения коэффициента преломления можно разделить на три основных класса: 1. Одномерные 2. Двухмерные 3. Трехмерные 1 2 3

  • Слайд 6

    одномерные в которых коэффициент преломления периодически изменяется в одном пространственном Такие фотонные кристаллы состоят из параллельных друг другу слоев различных материалов с разными коэффициентами преломления и могут проявлять свои свойства в одном пространственном направлении, перпендикулярном слоям.

  • Слайд 7

    двухмерные, в которых коэффициент преломления периодически изменяется в двух пространственных направлениях Такие фотонные кристаллы могут проявлять свои свойства в двух пространственных направлениях, и форма областей с коэффициентом преломления n1 не ограничивается прямоугольниками, как на рисунке, а может быть любой (окружности, эллипсы, произвольная и т. д.).

  • Слайд 8

    трёхмерные, в которых коэффициент преломления периодически изменяется в трёх пространственных направлениях. Такие фотонные кристаллы могут проявлять свои свойства в трёх пространственных направлениях, и можно их представить как массив объёмных областей (сфер, кубов и т. д.), упорядоченных в трёхмерной кристаллической решётке

  • Слайд 9

    Также различают резонансные и нерезонансные фотонные кристаллы . Резонансные фотонные кристаллы отличаются от нерезонансных тем, что в них используются материалы, у которых диэлектрическая проницаемость (или коэффициент преломления) как функция частоты имеет полюс на некоторой резонансной частоте.

  • Слайд 10

    Теория фотонных запрещённых зон

    фотонные кристаллы позволяют получить разрешённые и запрещённые зоны для энергий фотонов, аналогично полупроводниковым материалам, в которых существуют разрешённые и запрещённые зоны для энергий носителей заряда

  • Слайд 11

    Изготовление фотонных кристаллов

    Метод, использующие самопроизвольное формирование фотонных кристаллов При самопроизвольном формировании фотонных кристаллов используются коллоидальные частицы (чаще всего используются монодисперсные силиконовые или полистереновые частицы, но и другие материалы постепенно становятся доступными для использования по мере разработки технологических методов их получения), которые находятся в жидкости и по мере испарения жидкости осаждаются в некотором объёме. По мере их осаждения друг на друга, они формируют трёхмерный фотонный кристалл, и упорядочиваются преимущественно в гранецентрированную или гексагональную кристаллические решетки. Этот метод достаточно медленный, формирование фотонного кристалла может занять недели.

  • Слайд 12

    Метод травления Метод травления наиболее удобны для изготовления двухмерных фотонных кристаллов и являются широко используемыми технологическими методами при производстве полупроводниковых приборов. Эти методы основаны на применении маски из фоторезиста (которая задает, например, массив окружностей), осажденной на поверхности полупроводника, которая задает геометрию области травления. Эта маска может быть получена в рамках стандартного фотолитографического процесса, за которым следует травление сухим или влажным методом поверхности образца с фоторезистом. При этом, в тех областях, в которых находится фоторезист, происходит травление поверхности фоторезиста, а в областях без фоторезиста — травление полупроводника. Так продолжается до тех пор, пока нужная глубина травления не будет достигнута и после этого фоторезист смывается. Изготовление фотонных кристаллов

  • Слайд 13

    Изготовление фотонных кристаллов

    Голографические методы Голографические методы создания фотонных кристаллов базируются на применении принципов голографии, для формирования периодического изменения коэффициента преломления в пространственных направлениях. Для этого используется интерференция двух или более когерентных волн, которая создает периодическое распределение интенсивности электрического поля. Интерференция двух волн позволяет создавать одномерные фотонные кристаллы, трёх и более лучей — двухмерные и трёхмерные фотонные кристаллы.

  • Слайд 14

    Другие методы создания фотонных кристаллов

    Однофотонная фотолитография и двухфотонная фотолитография позволяют создавать трёхмерные фотонные кристаллы с разрешением 200 нм и использует свойство некоторых материалов, таких как полимеры, которые чувствительны к одно- и двухфотонному облучению и могут изменять свои свойства под воздействием этого излучения. Литография при помощи пучка электронов является дорогим, но выскоточным методом для изготовления двумерных фотонных кристаллов. В этом методе, фоторезист, который меняет свои свойства под действием пучка электронов облучается пучком в определенных местах для формирования пространственной маски. После облучения, часть фоторезиста смывается, а оставшаяся часть используется как маска для травления в последующем технологическом цикле. Максимальное разрешение этого метода — 10нм[60]. Литография при помощи пучка ионов похожа по своему принципу, только вместо пучка электронов используется пучок ионов. Преимущества литографии при помощи пучка ионов над литографией при помощи пучка электронов заключаются в том, что фоторезист более чувствителен к пучкам ионов, чем электронов и отсутствует «эффект близости» («proximityeffect»), который ограничивает минимально возможный размер области при литографии при помощи пучка электронов.

  • Слайд 15

    Использование фотонных кристаллов

    •Распределённый брэгговский отражатель является уже широко используемым и известным примером одномерного фотонного кристалла. • Лазеры с фотонными кристаллами позволят получить малосигнальную лазерную генерацию, так называемые низкопороговые и безпороговые лазеры; • Волноводы, основанные на фотонных кристаллах могут, быть очень компактны и обладать малыми потерями; • С помощью фотонных кристаллов можно будет создавать среды с отрицательным коэффициентом преломления, что даст возможность фокусировать свет в точку размерами меньше длины волны («суперлинзы»); • Фотонные кристаллы обладают существенными дисперсионными свойствами (их свойства зависят от длины волны проходящего через них излучения), это даст возможность создать суперпризмы; • Новый класс дисплеев, в которых манипуляция цветом пикселей осуществляется при помощи фотонных кристаллов, частично или полностью заменит существующее дисплеи; • Благодаря упорядоченному характеру явления удержания фотонов в фотонном кристалле, на основе этих сред возможно построение оптических запоминающих устройств и логических устройств; • Фотонные сверхпроводники проявляют свои сверхпроводящие свойства при определённых температурах и могут быть использованы в качестве полностью оптических датчиков температуры; способны работать с большими частотами, и совмещаются с фотонными изоляторами и полупроводниками.

  • Слайд 16

    Спасибо за внимание.

Посмотреть все слайды

Сообщить об ошибке